
Space Systems Engineering Lessons LeSpace Systems Engineering Lessons LeSpace Systems Engineering Lessons LeSpace Systems Engineering Lessons Learnedarnedarnedarned

TOR-2001(8583)-0913 06/30/01 Lesson No. 012

5

One Requirement, One Statement

The Problem:
Contact to an interplanetary probe was lost shortly before touchdown. Most likely, a
spurious signal prematurely shut down the descent engines, causing the spacecraft to
crash.

The Cause:

As the lander parachuted, it deployed three legs,
each with a sensor designed to command the
engine off upon touchdown lest the lander
overturn.
Leg deployment was known to trigger false
signals in the sensors, and the systems spec
indicated that the engine should be protected
from such transients.
Unfortunately, the protection clause was buried
in another requirement, as follows: “The
sensors shall… However, the use of the sensor
data shall not begin until….” This “However...”
phrase was not picked up by the software team
or by other subsystems, and was not specifically
tested at the system level.

The software walkthrough and integration/test did not detect this problem (logic flow
diagrams could have helped). What’s more, a leg-deployment test failed to detect the
fault because the sensors were improperly wired at first. A rerun of the deployment test,
which might have caught the error, was not performed after rewiring.

Lessons Learned:
• Do not lump several requirements together—write them out separately so that each

can be tracked individually. Negative statements (e.g., “Sampling shall not begin
until…”) may cause misunderstanding and should be avoided.

• Systems engineers must take ownership of requirements and partition them to the
appropriate subsystem. Whether or not a requirement is the software’s responsibility,
for example, should not be left to the discretion of the software team.

• Systems engineering must ensure thorough end-to-end failure mode testing.
• The software review process should emphasize logic flow. Tests should exercise

every requirement to see if there are conditions that could cause the software to fail.
• Test planning needs to consider transients or spurious signals.
• When important tests are aborted or are known to be flawed, they must be rerun after

the errors are fixed. Repeat the test if any software or hardware involved are
changed.

For comments on the Aerospace Lessons Learned Program, including background
specifics, call Paul Cheng at (310) 336-8222.

Leg deployment triggered a spurious reading
that should have been ignored. When the
touchdown sensing logic was enabled, the
software read the false data and terminated the
engine, causing the crash.

Software read
sensors;
shut down engine

Legs deployed;
sensors tricked

Descent decelerated
with engine

Software read
sensors;
shut down engine

Legs deployed;
sensors tricked

Descent decelerated
with engine

Legs deployed;
sensors tricked

Descent decelerated
with engine

	One Requirement, One Statement

